Literature review of current research on health effects and accepted guidelines for the management of indoor mould and water damage in the built environment

Article · December 2013

1 author:

Cedric D Cheong
Greencap

Mould and Moisture Damage | View project
LITERATURE REVIEW OF CURRENT RESEARCH ON HEALTH EFFECTS AND ACCEPTED GUIDELINES FOR THE MANAGEMENT OF INDOOR MOULD AND WATER DAMAGE IN THE BUILT ENVIRONMENT

Cedric D Cheong, M.Sc., B.Env.Sc, TAE 40110

Affiliation: Mycologia Pty Ltd, Department of Research and Development, Osborne Park, Western Australia, 6017, cedric.cheong@mycologia.com.au

Abstract: Extensive research studies have documented a strong association between exposure to dampness and amplified growth of mould and mycotoxins (including ochratoxin, aflatoxin and trichothecene) in water damaged and damp indoor environments and the incidence of respiratory symptoms, asthma, hypersensitivity pneumonitis, rhino-sinusitis, bronchitis and respiratory infections. Living in a water damaged and mouldy property is linked with poor physical health outcomes and the continual cycle of illness could eventually lead to anxiety and depression. This paper reviews the many position statements, alerts, advisory notes, guidelines and white paper documents of various cognizant international health authorities and available current scientific research on the health effects, assessment, prevention and remediation of indoor mould and water damage in the built environment.

BACKGROUND
It is estimated that 50% of illnesses are caused by indoor air pollution, of which water and mould damage are a significant contributor to adverse health effects. It is estimated that one in three homes in Australia are water and mould damaged and in the US, it is reported that one in two homes have dampness and mould issues.

Cognizant international health authorities and strong, credible scientific research have confirmed associations and links between health problems (including asthma and upper respiratory problems) with indoor dampness and mould. These organisations have issued position statements/documents, alerts, advisory notes, guidelines and white paper documents stating their respective positions (Table 1).

INTRODUCTION
Fungi/mould are ubiquitous in the indoor and outdoor environments, existing naturally in air, soil and water. It is estimated that we are routinely exposed to around 200 types of moulds. The majority of fungi are saprotropic and depend on an external source of organic material for growth.

The indoor built environment contains many of the components required for mould growth, such as oxygen, organic based nutrient sources, moisture and an acceptable temperature range. When humidity and moisture within the built environment are not effectively controlled or managed, persistent dampness and water damage can occur, leading to material damage, corrosion, structural decay and microbial growth (fungi and bacteria).

Persistent dampness, water damage and microbial growth within the built environment should be avoided or minimised as health authorities have established an association between damp buildings, mould growth and the increased potential for adverse health effects. Furthermore, there is a correlation between the length of time dampness and water damage exists in the built environment and increased damage and deterioration of building components.
<table>
<thead>
<tr>
<th>ORGANISATION</th>
<th>DOCUMENT</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Medical Association (WMA)</td>
<td>WMA Statement on Fungal Disease Diagnosis and Management⁵</td>
<td>October 2013</td>
</tr>
<tr>
<td>American Industrial Hygiene Association (AIHA)</td>
<td>Position Statement on Mould and Dampness in the Built Environment⁶</td>
<td>March 26, 2013</td>
</tr>
<tr>
<td>American Lung Association (ALA)</td>
<td>Standard of Care for the New Hampshire Mould Industry⁸</td>
<td>December 2012</td>
</tr>
<tr>
<td>Specialised Cleaning & Restoration Industry Association (SCRIA)</td>
<td>Draft Australian Water Damage Restoration Guidelines⁹</td>
<td>July 2012 *currently being reviewed for 2014 re-release</td>
</tr>
<tr>
<td>National Collaborating Centre for Environmental Health (NCCEH)</td>
<td>Health Effects from Mould Exposure or Dampness in Indoor Environments⁴⁰</td>
<td>July 2012</td>
</tr>
<tr>
<td>National Institute for Occupational Safety and Health (NIOSH) & Centre for Disease and Prevention (CDC)</td>
<td>Preventing Occupational Respiratory Disease from Exposure caused by Dampness in Office Buildings, Schools, and Other Nonindustrial Buildings⁵¹</td>
<td>November 2012</td>
</tr>
<tr>
<td>Global Indoor Health Network (GIHN)</td>
<td>Common Toxins in Our Homes, Schools and Workplaces⁴²</td>
<td>December 17, 2012</td>
</tr>
<tr>
<td>Mycologia</td>
<td>AMG-2010 Australian Mould Guideline⁵³</td>
<td>August 2010 *currently being reviewed for 2014 re-release</td>
</tr>
<tr>
<td>New York State (Mould Task Force)</td>
<td>Final Report to the Governor and Legislature⁴⁴</td>
<td>2010</td>
</tr>
<tr>
<td>World Health Organisation (WHO)</td>
<td>WHO guidelines for indoor air quality: dampness and mould⁴</td>
<td>2009</td>
</tr>
<tr>
<td>Institute of Inspection Cleaning and Restoration Certification (IICRC)</td>
<td>BSR-IICRC S920 Standard and Reference Guide for Professional Mold Remediation⁴⁵</td>
<td>2008 *currently being reviewed for 2013/2014 re-release</td>
</tr>
<tr>
<td>Institute of Inspection Cleaning and Restoration Certification (IICRC)</td>
<td>ANSI/IICRC S500 Standard and Reference Guide for Professional Water Damage Restoration⁴⁶</td>
<td>2006 *currently being reviewed for 2013/2014 re-release</td>
</tr>
<tr>
<td>Institute of Medicine (IOM)</td>
<td>Damp Indoor Spaces and Health⁵</td>
<td>2004</td>
</tr>
</tbody>
</table>

Table 1: List of organisations and released documents

HEALTH EFFECTS

Extensive research studies have documented that exposure to dampness and amplified growth of mould and mycotoxins (including ochratoxin, aflatoxin and trichothecene) in water damaged and damp indoor environments has been associated with the onset of respiratory symptoms, asthma, hypersensitivity pneumonitis, rhino-sinusitis, bronchitis and respiratory infections⁶⁸⁻²¹. Chronic exposure can then lead to inflammation and oxidative stress²²⁻³⁵. Individuals with asthma or hypersensitivity pneumonitis may be at risk for progression to more severe diseases if the relationship between illness and exposure to the damp building is not recognised and exposure continues³¹⁻¹¹.

The following list of verified health effects and symptoms are associated with mould exposure in damp and water damaged built environments¹⁸⁻¹⁹⁻³⁸⁻³⁹⁻⁴⁰⁻⁴¹.

- Asthma exacerbation, new onset asthma, upper respiratory tract (sore throat, conjunctivitis, allergic rhinitis, nasal congestion, runny nose), cough, wheeze, hypersensitivity pneumonitis in sensitive individuals, dyspnea (shortness of breath), respiratory infections, bronchitis, eczema, common cold and allergy/atopy.

Airborne exposure (inhalation) is the most significant mechanism of exposure to indoor mould in water damaged and damp indoor built environments, followed by transdermal (absorption) and foodborne (ingestion) exposure. Hyphae, spores, fungal fragments, and mycotoxins (macrocyclic trichothecenes, T2 mycotoxins) can be inhaled when fungal propagules are aerosolized. Transdermal exposure most often occurs when contaminated items and belongings are brought to new locations, resulting in cross-contamination and continued exposure. Foodborne exposure occurs through the ingestion of food contaminated by spores, mycotoxins and hyphae²²⁻³⁹⁻⁴².

continued next page
Current research has not determined conclusively the causal relationship and exact mechanism by which mould in the indoor environment causes health effects, but is likely to be from one or more of the following mechanisms: allergic and inflammatory responses (allergens), systemic infections (pathogens), or acute and chronic toxicity (toxins).\(^{2,18,43,44}\)

Longer term mental health effects have also been studied, with results showing occupants in water damaged buildings (WDB) who are exposed to toxigenic moulds are prone to cognitive impairment due to the damage to neurological tissue. A study of children exposed to indoor mould for more than 2 years showed statistically significant reduction of 10 points in their IQ. For longer term exposures, the risk for low IQ scores was tripled.\(^ {45-49}\)

In other studies, strong associations with depressive symptoms, with reports of emotional distress, were noted in individuals living in WDB. The associations were independent of individual and housing characteristics. Exposure to toxigenic moulds and conditions in WDB is thought to dysregulate emotions through a hypo-activation of the frontal cortex. Further compounding of stress can also be attributed to the stress of chronic illness as a result of exposure to mould and the stress of dealing with mouldy conditions in the building.\(^ {47,48,50-54}\) Other reported symptoms include problems with physical energy, sleep and social isolation.\(^ {55-57}\) Living in a water damaged and mouldy property is linked with poor physical health outcomes (respiratory problems, asthma exacerbation, new onset asthma, diarrhoea, nausea, headaches) and the continual cycle of illness may eventually lead to anxiety and depression.\(^ {57-60}\)

Fungal Disease Diagnosis and Management

The treatment of fungal diseases and illness can be difficult as many mechanisms are interacting at any given time, thus requiring a comprehensive and multi-faceted approach focussed on treating the fungal infection, removing oxidative stress in the body and instituting treatments which focus on countering oxidative stress.\(^ {61,62,63}\)

Complete removal of the individual from exposure to indoor mould, dampness and water damage and from contaminated items is critical in reducing exposure. However, this may not be enough for some individuals to regain their health. Continued persistence of symptoms and ill health may continue after exposure, likely due to genetic and nutritional factors as well as the initial severity, duration of exposure and continual exposure through cross-contamination.\(^ {64,65}\) The development of new onset chemical sensitivity (previously commonly known as multiple chemical sensitivity), can often occur after exposure.\(^ {62}\)

Available treatment approaches include the use of sequestering agents,\(^ {64,70}\) intake and support of anti-oxidants,\(^ {51,62,71,72}\) systemic, nebulised and intranasal glutathione\(^ {107,108}\) gastrointestinal probiotics,\(^ {73,76}\) nutritional support,\(^ {77-85}\) and the immediate treatment of persistent fungal infections or symptomatic colonisation.\(^ {86}\)

Further epidemiologic studies and research on the burden of fungal disease, illness and treatment options is needed and such research needs to be made available to physicians. As further knowledge and understanding of the best treatment approaches for fungal diseases and illness increases, this will help physicians to provide optimal care for patients.\(^ {8,12,86}\)

ASSESSMENT

There are no recommended quantitative/numerical, health-based exposure guidelines or thresholds for acceptable levels of contamination by microorganisms.\(^ {3,6,7,11,87}\) Many authorities have previously published guidelines, but many have since retracted them and the current acceptable approach is that any visible mould growth indoors, regardless of species or amount, is a cause for immediate concern and needs to be removed.

If visible mould is not detected after a thorough inspection but is suspected, microbial air and surface sampling in combination with moisture measurements from affected building materials may be carried out according to guidance documents.\(^ {39-40,44}\) Sampling and measurements are used to defend a hypothesis about the nature of the contamination, ‘hidden’ sources of contamination (behind wall or in cavities), and whether or not the indoor air is similar to outdoor air.\(^ {69,89,91}\)

Assessments should be conducted by qualified and experienced investigators, with resultant reports providing useful information for the development of an action plan for remediation and rehabilitation of the affected area, a basis for protection of occupants and remediation workers and be useful for public health officials and treating physicians. Field notes should be sufficiently detailed, clear and concise to allow field work and sampling to be interpreted, verified and repeated ensuring quality assurance.\(^ {3,88}\)

A complete holistic assessment of the indoor built environment incorporating a health and risk assessment should include the use of semi-quantitative estimates of the extent of visible mould and moisture damage (in the form of mould and dampness indices), complimented by data on the ventilation and air flow status, indoor air quality parameters, types of reservoirs present, medical practitioner diagnoses, HVAC hygiene status, air and surface sampling (where required), building investigation photo log, occupant behaviour and building history data.\(^ {46,92,93}\)

PREVENTION

Building materials that have become damp or water damaged, are at a high risk of fungal growth if combined with an organic nutrient source, resulting in health problems experienced by occupants and the eventual deterioration of the building.\(^ {69}\) It is therefore critical that building designers and architects choose materials that are appropriate to the environmental conditions and occupant use. For the control of mould in buildings, materials which are less susceptible to fungal growth (e.g., glass fibre instead of wallpaper) should be chosen and manufacturers of building materials...
encouraged to develop non-toxic, fungus or water-resistant materials96.

The water activity (aw) of a building material is a key determining factor for fungal growth and varies with the temperature and the type of material97. The longer a material’s aw is over 0.75, the greater the risk of fungal growth98, as high levels of water activity allow fungi to obtain moisture from the material for growth resulting in potential damage to the material. A definitive aw threshold does not exist for fungal growth as different fungi have different aw preferences99. The key is to ensure the aw of building materials is lower than the requirements for fungal growth and thus prevent colonisation from occurring100.

Two other important physical factors in the indoor environment that can affect the water requirements of fungi are temperature and the type of nutrients present on the surface. For fungal growth to occur, there is an optimal temperature range for particular species of fungi. Outside of that optimal temperature range, more water is necessary for growth. Similarly, if the nutrient source is not something the fungi normally would grow on in nature, more water is required for growth. This is because fungi are natural decomposers and break down organic compounds, thus fungi tend to grow more frequently and quickly on plant-derived or organic materials, such as wood and paper. When building materials are inorganic and do not come from a plant origin, or have been altered in some way, fungi require more water in order to grow97.

REMEDIATION

If visible mould is present, it should be remediated, regardless of mould species. This helps to reduce the risk of new onset asthma, and result in savings in health care costs and public health improvements95,96. Repair and remediation of the conditions that lead to the adverse exposure should be given priority to prevent additional loads to populations who are already immunocompromised and stressed by the increased burden of disease103.

The end goal of the remediation is that no further health symptoms are experienced by occupants upon re-habitation of the property and that further exposure and damage to building materials and furnishings are prevented11,95,103. Remediation and the removal of water and mould damaged materials should be conducted by qualified personnel as improper efforts could result in cross-contamination of microbes, spores, fragments, and toxins throughout the entire building structure102,103.

Remediation protocols should include the use of proper containment procedures and personal protective equipment (including respirators) as the action of removing and handling contaminated material will result in increased aerosolisation of spores and fungal fragments containing mycotoxins, which can be dangerous to human health when inhaled2,11,41,43,102.

The use of biocides, antimicrobials, sterilisers and disinfectants are often un-necessary in the remediation process and could pose further health problems for remediation workers and leave residual chemicals that may affect occupants upon re-habitation. Such products should only be used in appropriate situations such as those involving contaminated water (Class 2 & 3)15,16. Biocides and disinfectants cannot be used as a substitute for mould removal2,101. Appropriate PPE, operator experience and ventilation and exhaust protocols should be in place when using such products9,15,16,104.

Physical removal of all mould including active mould growth, mould laden dust, physical components, mycotoxins and fungal propagules is necessary as exposure to dead or inactivated mould or its components can still result in adverse health effects12,13. This is due to the structure of fungi, which incorporates an epoxide ring, thus making non-viable fungal spores, fragments and mycotoxins extremely hard to destroy105. A study of common chemical based building remediation treatments (peroxide, hot air, flaming, two boron-based chemicals, drying, steam, UV light, ammonium chloride or sodium-hypochlorite based chemicals) found that no remediation treatment eliminated all the mycotoxins from the building materials106.

SUMMARY AND CONCLUSION

Cognisant international health authorities and current scientific research have established an association between damp buildings, mould growth and the increased potential for adverse health effects. Persistent dampness, water damage and microbial growth within the built environment should be avoided or minimised.

There are no recommended quantitative/numerical, health-based exposure guidelines or thresholds for acceptable levels of mould contamination in the built environment. The current acceptable approach is that any visible mould growth indoors, regardless of species or amount, is a cause for immediate concern and needs to be removed.

Repair and remediation of the conditions that have led to the adverse exposure should be given priority to prevent further health effects. The end goal of the remediation is that occupants who return to their property experience no further health

continued next page
symptoms and there is no damage to building materials and furnishings.

Further epidemiologic studies and research on the burden of fungal disease, illness and treatment options is needed and such research needs to be made available to physicians to assist them in providing optimal care for their patients.

Cedric Cheong is trainer, speaker and researcher at Mycologia. Cedric was the co-host of the internationally acclaimed TV show, “Is Your House Killing You?” which highlights dangers within Australian homes. Cedric contributed to the development of the SCRIA Draft Australian Water Damage Restoration Guidelines in 2013 and the AIRAH HVAC Hygiene Guidelines in 2010 and has written over 45 publications in peer reviewed scientific journals as well as recent articles in AIHE and FM magazines. Cedric has recently released the Mycologia Position Statement on Indoor Mould and Water Damage in the Built Environment.

Cedric was an Associate Lecturer at Murdoch University and Notre Dame University in the field of Health and the Environment. Cedric has completed training in the area of microbial sampling and HVAC investigations in Phoenix, Arizona and has visited various research centres in the Netherlands, Finland, Singapore, Canada and the USA as part of his research on indoor fungi, mould remediation, cleaning and indoor air. Cedric holds current IICRC certification for water damage restoration and applied microbial remediation and has also completed training in Friable and Non-Friable Asbestos remediation.